

Data and Information

Data:

- O Data is the collection of raw facts and figures.
- O It has no proper meaning until it is processed.
- O It can be numbers, words, symbols, or pictures.
- O Example: 85, 90, 75, Ajay, 102.

• Information:

- When data is processed, organized, and presented in a meaningful way, it becomes information.
- O Information is useful for decision-making.
- O Example: Ajay (Roll No 102) scored 85, 90, and 75 in three subjects.

☐ **Relation**: Information = Data + Processing + Meaning

Databases and DBMS

Database:

- A database is an organized collection of related data stored in a structured format.
- O The data is arranged in tables (rows and columns).
- O Example: Student Database with fields like Roll No, Name, Class, Marks.

DBMS (Database Management System):

- O DBMS is software that helps in creating, storing, managing, and retrieving data from a database.
- O It provides tools to add, update, delete, and search data easily.

Examples of DBMS: LibreOffice Base, MS Access, MySQL, Oracle, SQL Server.

Main functions of DBMS:

- 1. **Data Storage** Stores large amounts of data safely.
- 2. **Data Retrieval** Fetches specific information quickly using queries.
- 3. Data Manipulation Insert, update, and delete records easily.

- Data Security Protects data from unauthorized access.
- 5. **Data Integrity** Maintains accuracy and consistency.
- 6. Backup and Recovery Restores data if lost.
- 7. **Multiple User Access** Many users can use the database at the same time.

Advantages of Database (Over File System)

Earlier, people used the **file system** to store data. But it had problems like data duplication, difficulty in searching, and no proper security. DBMS solved these issues.

Advantages of DBMS:

- 1. **Reduced Data Redundancy** Data is stored only once, not repeated.
- 2. **Data Consistency** Same data is available for all users, no mismatch.
- 3. **Data Security** Password protection and user access rights are available.
- 4. **Easy Backup and Recovery** Lost data can be restored easily.
- 5. Multi-user Access Many users can use the same database at the same time.
- 6. **Efficient Searching** Queries make searching very fast.
- 7. **Data Sharing** Data can be shared among different applications.

Data Models

□ A **data model** is a way to organize and represent data in a database. It shows how data is connected and how it will be stored.

(i) Hierarchical Data Model

- Data is stored in a tree-like structure.
- It follows Parent-Child relationship.
- Each child can have only one parent, but a parent can have multiple children.
- Example: Company → Departments → Employees.
- □ **Advantages:** Easy for one-to-many relationships, fast access.
- ☐ **Disadvantage:** Difficult to modify structure, not flexible.

(ii) Network Data Model

- Data is stored in records and connected using links (pointers).
- Each record can have multiple parent and child records.
- Allows many-to-many relationships.
- Example: Students

 Courses (One student can take many courses, and one course can have many students).

Advantages: Flexible and handles complex relationships.
□ Disadvantage: Structure is complicated, difficult to maintain.

(iii) Relational Data Model

- Data is stored in the form of tables (rows and columns).
- Each table is called a **Relation**.
- Very simple and widely used model in modern databases.
- Example: Student Table → Roll No, Name, Marks.

□ Advantages: Easy to use, flexible, supports queries.
☐ Disadvantage: Slower for very large databases compared to hierarchical

Relational Database Model (RDBMS)

A **Relational Database Management System (RDBMS)** stores data in tables and maintains relationships between them. It is the most popular type of DBMS used today.

(a) RDBMS Terminology

- 1. Table (Relation): Collection of data in rows and columns.
- 2. Row / Record / Tuple: A single complete entry in the table. Example: (101, Ajay, 95).
- 3. Column / Field / Attribute: A property of data. Example: Roll No, Name, Marks.
- 4. **Primary Key:** A field that uniquely identifies each record. Example: Roll No.
- 5. **Foreign Key:** A field that links two tables. Example: Class ID in Student Table linking to Class Table.
- 6. **Query:** A tool to ask questions and get answers from the database.
- 7. Form: User-friendly way of entering and editing data.

8. **Report:** Used to display and print data in a formatted manner.

(b) Objects of an RDBMS

- 1. **Tables:** Store the actual data in rows and columns.
- 2. Queries: Retrieve, filter, and sort data.
- 3. Forms: Provide a simple way to input and update data.
- 4. **Reports:** Present information in a readable and printable format.

Introduction to LibreOffice Base

- LibreOffice Base is a Database Management System (DBMS) software.
- It is used to create, store, manage, and retrieve data in an organized way.
- Base helps you enter data, organize it, query it, and present it in reports.
- LibreOffice Base is **free**, **open-source**, and works on Windows, Linux, and macOS.

Why we use LibreOffice Base:

- 1. To store large amounts of data safely in tables.
- To find information quickly using queries.
- To enter and update data easily using forms.
- 4. To **generate reports** for analysis or printing.

Example: A school can use LibreOffice Base to maintain a **Student Database** with Name, Roll No, Class, Marks, etc.

Data Types in LibreOffice Base

Every field (column) in a table must have a **data type**. It determines what kind of data can be stored.

Data Type	Description	Example
Text (VARCHAR)	Letters, numbers, symbols	Name, Address
Integer	Whole numbers	Roll No, Age

Decimal / Float	Numbers with decimals	Marks, Price
-----------------	-----------------------	--------------

Date Dates 13-09-2025

Time Time values 10:30 AM

Boolean / Yes-No True/False or Yes/No Pass/Fail

Tip: Choosing the correct data type helps in preventing errors and maintaining data integrity.

Starting LibreOffice Base

Steps to start LibreOffice Base:

- 1. Open LibreOffice → Click **Base icon**.
- 2. You will see a **Database Wizard**:
 - O Option 1: Create a new database → Start from scratch.
 - O Option 2: Open an existing database → Work with saved data.
- 3. The wizard guides you step-by-step to create a database.

User Interface of LibreOffice Base

The Base window has several sections:

- 1. Menu Bar: Contains commands like File, Edit, View, Tools.
- 2. **Toolbar:** Quick access to New, Open, Save, Print, etc.
- 3. Database Objects Pane (Left side): Shows:
 - O Tables
 - O Queries
 - O Forms
 - Reports
- 4. **Workspace (Right side):** The area where you work with tables, forms, queries, or reports.

5. **Status Bar:** Displays info about the database and selected object.

Tip: Learn the icons – e.g., New Table, Run Query, Form Wizard – it makes work faster.

Opening a Database

- To open a saved database:
 - Click File → Open
 - 2. Select the .odb file from your computer
 - 3. The database opens in the LibreOffice Base window
- After opening, you can view tables, queries, forms, and reports.

Creating a Table

A table stores all the data in a database in rows (records) and columns (fields).

(a) Using Table Wizard

The **Wizard** is a beginner-friendly method.

Steps:

- 1. Go to Tables → Use Wizard to Create Table
- 2. Select **fields** from the suggested list (e.g., Name, Roll No, Marks)
- 3. Arrange the fields in proper order
- 4. Set data types and sizes automatically
- 5. Click Finish → Table is created

Example: Student Table

| Roll No | Name | Class | Marks |

(b) Using Design View

Design View is an advanced method giving **full control over table structure**.

Steps:

- 1. Go to Tables → Create Table in Design View
- 2. Add fields (columns) one by one:

- O Field Name: Roll No → Data Type: Integer
- O Field Name: Name → Data Type: Text
- O Field Name: Marks → Data Type: Decimal
- 3. Set Field Properties: size, default value, validation rules
- 4. Set **Primary Key** if required (unique identifier for records)
- 5. Save the table with a suitable name

Setting Primary Key

- Primary Key ensures that each record in the table is unique.
- Usually used on fields like Roll No, Employee ID, etc.

Steps to set Primary Key:

- Open table in Design View
- 2. Select the field (e.g., Roll No)
- 3. Right-click → Select **Primary Key**
- 4. A **key icon** appears next to the field \rightarrow Primary key set

Why Primary Key is important:

- Prevents duplicate records
- Helps in creating relationships between tables

Saving a Table

• After creating a table, it must be **saved**.

Steps:

- 1. Click File → Save
- 2. Enter a **Table Name** (e.g., Student)
- 3. Click OK → Table is saved

Tip: Always save before closing LibreOffice Base to avoid losing data.

Example of Table Creation (Step by Step)

- 1. Open LibreOffice Base → Create new database → Save
- 2. Go to Tables → Use Wizard to Create Table
- 3. Select fields: Roll No, Name, Class, Marks
- 4. Click **Next**, arrange fields, set data types
- 5. Set Primary Key = Roll No
- 6. Click Finish, table is created
- 7. Enter sample data:

Roll No	Name	Class	Marks
101	Ajay	10A	95
102	Deepak	10B	88
103	Ramesh	10A	90

Entering Data into a Table

- After creating a table, you need to **enter data (records)**.
- Each row = one record, each column = one field.

Steps to enter data:

- 1. Open the **table** by double-clicking its name in the Tables pane.
- 2. The table opens in **Data View** (also called **Table View**).
- 3. Click on the first empty row.
- 4. Type the data for each field.
 - O Example: Roll No \rightarrow 101, Name \rightarrow Ajay, Class \rightarrow 10A, Marks \rightarrow 95
- 5. Press **Enter** or **Tab** to move to the next row.

Tips:

Always enter data in the correct column type.

- O Example: Don't type text in a number field.
- Base automatically saves each record after entering.

Navigating Through the Table

When a table has many records, you need to move through the table efficiently.

Navigation Options:

- 1. **Arrow Keys:** Move one cell up, down, left, or right.
- 2. **Tab Key:** Move to the next field in the same record.
- 3. **Shift + Tab:** Move to the previous field.
- 4. Navigation Bar (Bottom of Table View):
 - O First Record: Goes to the first record
 - O Previous Record: Moves one record up
 - O Next Record: Moves one record down
 - Last Record: Goes to the last record
 - O New Record Button (+): Add a new record

Tip: Navigation bar is very useful when working with **large tables**.

Editing Data in a Table

Sometimes you need to update or correct data in the table.

Steps to edit a record:

- 1. Open the table in **Data View**.
- 2. Click on the **cell** you want to edit.
- 3. Type the new value.
- 4. Press Enter → Base automatically saves the change.

Example:

- Original: Marks = 88
- Edit: Marks = 90 → Updated automatically

Tip: Be careful when editing **primary key values**, as it may affect table relationships.

Deleting Records from a Table

• To remove unwanted or incorrect records from a table:

Steps to delete a record:

- 1. Select the **entire row** of the record to delete.
- 2. Right-click → Select **Delete Record**
- 3. A confirmation message appears → Click **Yes**
- 4. Record is removed permanently from the table

Tip: Deleted records **cannot be recovered** unless you have a backup.

Sorting Data in a Table

Sorting helps to arrange records in ascending or descending order.

Steps to sort data:

- 1. Open the table in **Data View**.
- 2. Select the **column** to sort (e.g., Marks).
- 3. Click Data → Sort Ascending → Lowest to highest
- 4. Click Data → Sort Descending → Highest to lowest

Example: Sorting students by Marks:

- Ascending: 75, 85, 90, 95
- Descending: 95, 90, 85, 75

Tip:

- Sorting does not delete records, it only rearranges the view.
- You can sort by **multiple columns** (e.g., Class first, then Marks).

Editing and Deleting Tables

Editing a Table

- Sometimes you need to change the structure of a table (add/remove fields, change data types, etc.).
- Steps to edit a table:
- 1. Open LibreOffice Base → Go to **Tables** pane.
- 2. Right-click on the table → Select **Edit**
- 3. You can:
 - O Add new fields (e.g., add "Email" column)
 - O Change field names or data types
 - O Reorder fields if needed
- 4. Save changes → Table is updated

Deleting a Table

- To **permanently remove a table** from the database:
- 1. Go to Tables pane
- 2. Right-click on the table → Select **Delete**
- 3. Confirm deletion \rightarrow Table is removed permanently

Tip: Always backup the database before deleting tables.

Relationships Between Tables

- A **relationship** links **two or more tables** to show how their data is connected.
- Helps avoid duplicate data and maintain data consistency.

Example:

- Student Table: Roll No, Name, Class
- Class Table: Class ID, Class Name, Teacher
- Relationship: Student.Class → Class.Class ID

Types of Relationships

(a) One-to-One (1:1)

- One record in Table A is related to **only one record** in Table B.
- Example:
 - O Student → Student ID
 - O Student Profile → Each student has **only one profile**

(b) One-to-Many (1:N)

- One record in Table A is related to many records in Table B.
- Example:
 - O Class → Class ID
 - O Student → Many students belong to **one class**
- Most common type of relationship in databases

(c) Many-to-Many (M:N)

- Many records in Table A are related to many records in Table B.
- Example:
 - O Student ↔ Courses
 - One student can take many courses, and one course can have many students
- Requires a **junction table** to manage the relationship

Advantages of Relating Tables

- 1. Avoid Data Redundancy: Store information only once
- 2. Ensure Data Consistency: Changes in one table automatically reflect in related tables
- 3. Easier Data Management: Add, delete, or update data without affecting other tables
- 4. Faster Queries and Reports: Fetch related information easily
- 5. **Better Organization:** Data is structured and clear

Creating Relationships Between Tables in LibreOffice Base

Steps:

- 1. Open the database → Go to Tools → Relationships
- 2. The Relationships window opens → All tables are listed
- 3. Drag the field from Table A (e.g., Class ID) → Drop it onto the related field in Table B
- 4. The Edit Relationship dialog appears → Check settings:
 - Enforce Referential Integrity
 - O Choose **Relationship type**: One-to-One or One-to-Many
- 5. Click **OK** → Relationship is created

Example:

 Drag Class ID from Class Table → Drop onto Class field in Student Table → One-to-Many relationship

Referential Integrity

- Referential Integrity ensures that relationships between tables remain consistent.
- Rules:
- You cannot delete a record from the primary table if it has related records in another table
- 2. You cannot enter a value in the foreign key field that does not exist in the primary table
- 3. It ensures data accuracy and consistency across related tables

Example:

- Student Table → Class field (foreign key)
- Class Table → Class ID (primary key)
- Referential Integrity prevents a student from being assigned to a non-existent class

Introduction to Queries

- A Query is a tool to retrieve specific information from one or more tables in a database.
- It acts like a question to the database: "Give me all students with marks above 90."
- Important: Queries do not change the original table, they just display filtered or sorted data.

Uses of Queries:

- Filter data based on conditions
- 2. Sort data in ascending or descending order
- 3. Perform calculations on numerical data (like sum, average)
- 4. Combine data from multiple tables

Creating a Query Using Query Wizard

Query Wizard is the easiest way to create queries step-by-step.

Steps:

- 1. Open database → Go to Queries → Use Wizard to Create Query
- 2. Select **Table or Query** as the data source (e.g., Student Table)
- 3. Select **Fields to include** (e.g., Roll No, Name, Marks)
- 4. Set **Filter criteria** (optional)
 - O Example: Marks > 90
- 5. Choose **Sort order** (optional)
 - O Example: Sort by Marks descending
- 6. Name the query and click **Finish**
- 7. Query result shows the filtered or sorted data

Tip: The wizard is **user-friendly** and best for beginners.

Creating a Query Using Design View

Design View gives more **control** and **flexibility** for advanced queries.

Steps:

- 1. Go to Queries → Create Query in Design View
- 2. Add tables you want to use in the query
- 3. Drag fields from tables into the query grid
- 4. Set criteria in the "Criteria" row
 - O Example: Marks > 90
- 5. Set sort order in the "Sort" row
- 6. Save and run the query

Example Grid:

Field	Table	Criteria	Sort
Name	Student		
Marks	Student	>90	Desc

Editing a Query

- To change an existing query:
- 1. Open the Queries pane
- 2. Right-click the query → Select **Edit**
- 3. Modify fields, criteria, or sort order as needed
- 4. Save the changes → Run the query to see updated results

Tip: Editing queries does not affect the original table.

Working with Numerical Data in Queries

Queries can perform calculations on numerical data.

Common Operations:

1. Sum: Total of all values in a column

2. Average: Mean of numerical values

3. **Count:** Number of records that meet a condition

4. Min / Max: Find smallest or largest value

Example:

Query: Average Marks of students in Class 10A

- Steps:
 - 1. Add Marks field
 - 2. Choose Function → Average
 - 3. Set criteria (Class = 10A)
 - 4. Run query → Result shows average marks

Forms in Base

- A Form is a user-friendly interface for entering, viewing, and editing data in a database.
- Forms make it easier to **add records** without opening the table directly.
- Forms can include: text boxes, drop-down lists, buttons, checkboxes, etc.

Uses of Forms:

- 1. Simplify data entry
- 2. Reduce errors by restricting input types
- 3. Make database more interactive and professional

Creating a Form Using Wizard

Form Wizard allows beginners to create forms step-by-step.

Steps:

- 1. Go to Forms → Use Wizard to Create Form
- 2. Select Table or Query as data source

- O Example: Student Table
- 3. Select **fields** to include in form (e.g., Roll No, Name, Marks)
- 4. Choose **layout style** (Columnar, Tabular, etc.)
- Set form title
- 6. Click Finish → Form is created
- 7. The form opens → You can **enter new records** easily

Tip: Columnar layout is most common for data entry forms.

Modifying a Form

• Forms can be customized in **Design View** to improve appearance or add functionality.

Steps to modify a form:

- 1. Right-click the form → Select **Edit**
- 2. Add/remove fields, move controls, resize text boxes
- 3. Change font, color, and style of labels and fields
- 4. Save the modified form

Tip: Always test the form by entering a few records to ensure it works properly.

Form Controls Toolbar

• The Form Controls Toolbar provides tools to add interactive elements:

Control	Use
Text Box	Input or display text
Label	Display field name
Combo Box	Drop-down list selection
Check Box	Yes/No input

Option Button Multiple-choice selection

Command Button Perform actions (e.g., save

record)

Tip: These controls improve data entry accuracy and speed.

Reports in Base

 A Report is used to present database information in a readable and professional format

• Reports are mainly for printing or sharing data.

Uses of Reports:

- 1. Summarize information from one or more tables
- 2. Include titles, headings, and formatted data
- 3. Display totals and calculations

Inserting Other Controls in Reports

- In Report Design View, you can add:
- 1. **Text boxes** → Show field values
- 2. **Labels** → Describe fields
- 3. **Lines or rectangles** → Separate sections visually
- 4. **Images or logos** → School logo or watermark

Tip: Adding controls makes the report more professional and easier to read.

Inserting Titles & Headings in Reports

Titles and headings make reports organized and clear.

Steps:

- 1. Open the report in **Design View**
- 2. Use the Label control from Form Controls toolbar
- 3. Type the **title or heading** (e.g., "Student Marks Report")

4. Change font size, color, and style for visibility

Inserting Date & Time in Reports

• Date and time provide **context** for reports.

Steps:

- 1. In Design View → Insert → Field → Date/Time
- 2. Select **format** (e.g., DD-MM-YYYY or HH:MM AM/PM)
- 3. Position it in the header or footer

Tip: Including date/time is useful for official reports and printing.